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Abstract

This paper addresses the extendability of equilibrium solutions of
pure nematic liquid crystal polymers. More precisely, we apply the
asymptotic analysis to show that the Jacobian of the nonlinear system
is nonzero for both the prolate branch and the oblate branch when
the nematic strength is large enough. This result implies the existence
and uniqueness of the equilibrium solutions in the presence of small

perturbations.
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1 Introduction

The kinetic Doi-Hess theory [6, 15] has been a useful tool for modeling
nematic liquid crystal polymers (LCP). The Doi-Hess theory uses rigid rods to
represent the nematogenic molecules and describe the ensemble with an orien-
tational probability density function (pdf). The rotational transport equation
for the orientational pdf is given by a nonlinear Smoluchowski (Fokker-Planck)
equation. The Smoluchowski equation has attracted a lot of attentions from
the mathematical society [2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 23, 21, 17,
24, 26, 22, 25].

In [24] we showed that for large values of the nematic strength and small
perturbation there is a solution near the corresponding unperturbed pure ne-
matic solution. The existence was established using complicated free energy
arguments. Furthermore, only existence was established while the uniqueness
was not shown. Here in this study we use the asymptotic analysis to show that
for large values of the nematic strength, the Jacobian is nonzero. Therefore,
we establish the extendability (both existence and uniqueness) of the equilibria

of nematic polymers in the presence of small perturbations.

2 Nonlinear systems and equilibrium solutions

We briefly present the mathematical model system of the Doi-Hess kinetic
theory for homogeneous flows of rigid rodlike nematogenic molecules immersed
in a viscous solvent [6, 15]. By “homogeneous” it is meant that the LCP
orientational distribution is uniform in space. We denote the orientational
direction of each polymer rod by a unit vector m. For pure nematic polymers,

the total potential consists of only the Maier-Saupe interaction potential
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where the tensor product mm and tensor double contraction A : B are defined

as

mimy  MamMmo  1M1MN3
mm = Moty Moty 113 s

mg3my  1gims  M3M3
A:B = Zaijbij. (2)
7]

In (1) b = 3N/2 and N is the normalized polymer concentration describing
the strength of inter-molecular interactions, and (mm) is the second moment

of the orientation distribution:

(mm) = /Ilmll mm p(m) dm, (3)

where p(m, t) is the orientational probability density function of the ensemble,
i.e., the probability density that a polymer rod has direction m at time ¢.
The potential (1) has been normalized with respect to kgT where kg is the
Boltzmann constant and 7" the absolute temperature.

For pure nematic polymers, the equilibrium solutions of the Smoluchowski

equation are described by the Boltzmann distribution [6]:

1

p(m) = = exp[-U(m)], (4)

where Z = [yexp[—U(m)]dm is the partition function and S is the unit
sphere.
Let us select the coordinate system such that the second moment (mm) is
diagonal:
(m) 0 0
(mm) =10 (mj) 0 | (5)
0 0 (m2)

As a consequence, the Maier-Saupe potential can be written as
U(m) = =b({mi)mi + (m3)m3 + (m3)mj). (6)

The most significant conclusion for pure nematic polymers is that all equilib-

rium solutions are axisymmetric 7, 18, 23|. Since not all equilibrium solutions
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of a perturbed nematic polymer ensemble are axisymmetric, to facilitate the
discussion of the extendability , we formulate the problem without using the
axisymmetry. In the Boltzmann form (4), an equilibrium solution is com-
pletely specified by the second moment (mm). Because of the constraint

m? + m3 + m3 = 1, an equilibrium solution is completely specified by
si=(mi),  s2 = (mj). (7)

We choose the coordinate system such that for nematic polymers without
perturbation we have s; = sy. In terms of (s1, s2), the Maier-Saupe potential

can be expressed as

Um) = —b(s; m% + 59 m% + (1 — 81— s9) mg)
1 3
= —b 5(32 — 31)(m§ — m%) +(1- 5(31 + 32))m§ + const. (8)

From (7), the nonlinear system for (sq, s2) is
s1—(mi) =0, 55— (m3) =0, (9)

where the equilibrium pdf used in averaging is

1

plm) = — exp {b [%(32 )M —m?) + (1 — g(sl + 52))m§} } . (10

The form of the equilibrium pdf (10) suggests us to introduce a new pair of

unknown variables
3 b
n15b[1_5(81+82) : 77255(52—31). (11)

Or, equivalently, the nonlinear system for (1, 1,) is

n 1
F1(77177]2) = ?1 - 5(3<mz2a> —1)=0,
7 1
Fy(nu,m2) = f - §<m§ —mi) =0, (12)

where the equilibrium pdf used in averaging is

exp [1a(m3 — m3) + mm]
— . 13
P T 1) = e (il —mi?) + o] dim (13)
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3 Jacobian of the nonlinear system

Recall that we have selected our coordinate system such that for pure
nematic polymers we have 1, = 0. Let us calculate the Jacobian of system
(12) at an equilibrium of pure nematic polymer where 7, = 0.

We start by finding the partial derivatives of pdf (13):

0 exppp(mi —m3i) +mmi]
O [s exp [12(m3 — m3) + mm3] dm

O mmm) =
anlp 77717772 -

= (m?‘) - <mi2‘)>)p(m>7717772)’ (14)

0 exp [n2(m3 — mi) + mm3]

Iy [ exp [ma(m3 —m3) +mm3] dm

9 mmm) =
87]2p 77717772 -

= (m3 —mi— (m3 —m3))p(m,n,n,). (15)

Then the partial derivatives of (12) at an equilibrium (7, = r, 72 = 0) are given
by

GrFilmom) = 3= 5 (m(md — (md)) = § - Fvar(md),

GrFilmm) = g tm(m — md — (} — m) =0, (16)
GrFalmom) = 5 (m — md)(m — (d)) =0

SePama) = g = g {(mE = md)md = mi = = md) = G = 5 ((m = )

In the above calculations all averages are evaluated using the pdf
1
p(m7 m=nrrn= 0) = E exp(rmg), (17>

where r satisfies the equation

r 1

.3 (3(m3) —1) = 0. (18)
Now we write (18) in a more explicit form using spherical coordinates. We
select the z-axis as the pole of the spherical coordinate system. The pdf (13)

in spherical coordinates is of the form

B exp(r cos? @)
27 [T exp(rcos? ¢) sinpde’

p(o,0) (19)
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Substituting this expression into 3(m3) — 1 yields

Jo(3cos® ¢ — 1) exp(r cos? ¢) sin ¢ do _ J3 (3u? — 1) exp(ru?)du

3(m3) — 1=
ms) Jo exp(r cos? ¢) sinp de ) exp(ru?) du
(20)
where a change of variable u = cos ¢ is applied. Integrating by parts yields
[Lexp(ru?)d(u® — u [Hu — u?)uexp(ru?)du

Jo exp(ru?) du Jo exp(ru?) du
With the aid of (21), the equation (18) for r becomes

F h u2(11— u?) exp(ru%du] o, (22)

b Jo exp(ru?) du

Finally, it follows from (16) that the Jacobian of the nonlinear system (12)
at an equilibrium is given by
O(Fy, Fy)

(1, ) B F N §Var(m§)] ' F ~Hmi-md)]. (@3)

b 2 b 2

m=r
n2=0

We discuss several cases.

e Case 1: Equation (22) has a trivial solution r = 0, corresponding to the

isotropic state. In the isotropic state,

! o 1 a1 5 oy L .
p<m>_4ﬂ_7 <mj>_37 <mj>_57 <mzmj>_ 157 Z#]a
1 1 4
2y — (A m2)2 = 2 _ - 24
var(ms) = (mg3) — (ms) 50 45 (24)
2 2 4
((m3 —m1)?) = (ma) = 2(mim3) + (m1) = = — = = =
On substituting these results into the right-hand side of (23), we obtain
1 3 1 2 15
g — 5Var(/rng) = g — 1—5 =0 if and Only ifb= ?,
(25)
1 1 1 2 . . 15
6—5((m§—mf)2) =371 =0 1fandonly1fb:?.
It follows immediately that
F, F 1
OlF, F) 0 if and only if b= = (26)
Am.n2) | m=r 2

n2=0

Therefore, away from b = %, the isotropic state can be extended.
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e Case 2: For r # 0, equation (22) is equivalent to

1 _ fol u?(1 — u?) exp(ru?) du
p = ) where f(r) =

(27)

In [23] it has been shown that the function f(r) has the following prop-

erties:
L f(0) = 1
2. lir+n f(r)=0and lim f(r)=0;

3. f(r) attains its maximum at r = r* = 2.1782879748 where f(r*) =

0.14855559992254 and b* = ﬁ = 6.7314863965;

4. For r < r*, f(r) is strictly increasing; For r > r* f(r) is strictly

decreasing.

From the properties of the function f(r), it is clear that equation (27)
has a solution for b < b*. For b > b*, there are two solutions: r,(b) > r*
and r,(b) < r*. Here we use the subscript “p” to refer to a prolate state
and the subscript “o0” to refer to an oblate state even though this labeling
is not completely precise. In fact, 7,(b) corresponds to a prolate state
for all values of b > b* while r,(b) corresponds to an oblate state only
for b > 7.5. For 7.5 > b > b*, r,(b) corresponds to a prolate state. As
b — 400, we have

lim 7,(b) = +o0, lim r,(b) = —oc. (28)

b—+o00 b—+o00

Now we look at the asymptotic behaviors of the prolate branch (r —
+00) and the oblate branch (r — —oc). For mathematical convenience,

we use r as the independent variable.

e Case 2A: The prolate branch (r — +00)

Our approach is to expand f(r) for r — +o0. First, to evaluate the

integrals in (27), we make the change of variables:
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Substituting into the integrals in (27) yields

/01 exp(ru?) du = /01 exp(r(l — U))Q\/% dv

1 1
:exp(r)/ exp(—rv)(1+—v+§02+-~-)dv
2 0 2 8
_exp(ﬂ(l Lry3 )
“ Gttt
1 1 1
/u2(1—u)exp(ru) /(1—v)vexp( (1—-7))——dv
0 0 2v/1—v
exp(r) [!
:T/exp 1—0)0(1+ —v+ v + - )dv
0
_eXP(T)/l _ ( Ly, 1 )
=—5 J exp(—rv) (v 5~ gY + dv

_exp(r)(l 1 3 1+”.)‘

1 1 1 3 1
_ olu2(1—u2)exp(7“u2)du: ﬁ< _;_Z'T_z"‘"')
folexp(TuQ)du 1(1+11+§i+)
2 r 4 r2?

,
_1(1 31 81 >
or 2 r  4r? ’

Now we calculate var(m3) and {(m3 — m?)?). We note that
var(mg) = var(l —mg) = ((1 —m3)*) — (1 —mg)”.

Introducing change of variable u = cos ¢, we get

_ I sin® ¢ exp(rcos?¢) singde [y (1 — u?) exp(ru?) du

J— 2 —
0 M) = b (r co ) sin 6 9 Top(a)di
ooy o sin® ¢ exp(rcos?¢) singdg  fo (1 —u?)? exp(ru?) du
(L =me)") = J§ exp(rcos? ¢) sinpdp Ji exp(ru?) du . (29)
(m2 22, 1 [T sin® ¢ exp(rcos? @) singde 1 [ (1 — u?)? exp(ru?) du
2 = =3z .

Jo exp(r cos? ¢) sin ¢ dop 2 I exp(ru?) du
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Note that
1 1 1
/(1—u2) exp(ru2)du:/ vexp(r(l —v)) ———=dv
0 0 2v1 —w
exp(r) [! 1, exp(r), 1 1
= /Oexp(—rv)(v—l—iv +--)dv = 5 (T—Q—i-ﬁ—i----), (30)
1 1 1
/(1—u2)2 exp(ru2)du:/ v?exp(r(l —v))——=dv
0 0 2v1—w
exp(r) 1 1 exp(r), 2 3
= 2( >/o exp(—rv)(v2+§v3+--~)dv: 2( )(ﬁ+ﬁ+)
Substitution of (30) into (29) leads to
1 1
) o Jo(I—u?) exp(ru®)du ﬁ(1+;+ )
(L= ms) = [ exp(ru?) du B L1
0 —(1+§~—+ )
1 11
ey G I i R
7"( +2 7“+ )
3
L] — 02)2 2\ d —(14+=-=+4+--)
<(1_m2)2>_f0( u) exp(ru) ’LL_ 7“3 2 r
B [ exp(ru?) du 1 11
0 _(1+_._+...)
r 2 r
2 1
:—]_ —
3
(2 — 2yt) — L= ety du 50 F 5 F )
U2 fexp(re?) du Topl !
(1+ . +)
r 2 r
1 1
:—1 —
7’2( +r+ )
Hence
1 3 1 3
b iVar(m:%,) =373 (<(1 —m3)?) — (1 — m§>2)
1 3 1 31 32 1 1
=g ot g [Ee ) s Gy e
1 3 1 31 3 1 1
= Uyt my et



;(1—3-;—Z-T—2+-~-)>0forlarger,

1y e 31 31 11

- _ _q_-2.2_° il S S (1az
1 1 5 1
;(1—2-;—Z-T—2+-~-)>0forlarger.

Consequently, it follows from (23) that

O(Fy, Fy)

A, m2) | m=r
n2=0

> ( for large r.

Therefore, for large r (large b), the prolate branch is extendable.

e Case 2B: The oblate branch (r — —o0)

Hong Zhou and Hongyun Wang

(31)

We use the same approach as before where the key step is to expand f(r)

for A\ = —r — +00. To do so, we introduce the change of variables
U= u27 U = \//I_}7
1
dv =2ud du = ——= dv.
v=2udu, du NG v
Then the integrals in (27) turn into
1 ) d 1 A ! d
/0 exp(ru”) du = /0 exp(— 0)2\/17 v
_L TG _vro
2 VN2 =
1 1 1
/ u?(1 — u?) exp(ru®) du = / (1 —v)vexp(r(l —v))———dv
0 0 2v/1—v

= /01(1 —v)vexp(—Av) ﬁ dv

= %/01 exp(—Av) (ﬁ - U%) dv
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With the help of these results, (27) can be rewritten as

L s
g u*(l—w?)exp(ru®)du  /=r (-r) |2 4 (-r)

=Jr= I exp(ru?) du 1

1 (1 3 1
_ - _ 2. | 32
=l &
The order parameter is given by

1 9 ~r 1
5(3<m3>—1)—g——§

In order to calculate var(m?2) and ((m2 —m?)?). we observe that

_Ji cos’ ¢ exp(r cos® ¢) sin ¢ do
© JTexp(rcos? ¢) sin ¢ de
1

_ Jputexp(ru®)du Jo v? exp(rv)g 7 dv

(m3)

JYexp(ru?)du @\/1_7
_5
G0t s

T 27

L W
and

s 2 2 : d
(m2) — Jor cos® ¢ exp(r cos® @) sin ¢ do

Jo exp(r cos? ¢) sin ¢ dop

_ Jou? exp(ru®)du Jo vexp(rv) 75 dv

JYexp(ru?)du @ ) ﬁ
_3
-1
B VT, _1 9
2 —r
So we have
3 1 1
var(m3) = (m3) — (m3)* = 15 = (=5 = 5.5
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1 - TR (33)
2 =r

1 3 (m2) 1 1 3 1 3 1
— — —var(ms) = ] Ei
b 2 (=) |2 4 (=) 2 22
1 3
__2_7“_2—7“2>0 as r — —oo0,
1 1, 5 55 1 1 31 1(1 1
p ~glm M) = lQ 4(—0] 2(2 a2(—r) )
L ) (34)
- DR _— .
T as r 00
Thus, from (23) we arrive at
O(F1, F:
M <0 asr — —oo0.
(1, m2) | m=r
n2=0

In summary, the oblate branch is extendable as r — —oc.

4 Conclusions

We have applied the asymptotic analysis to show that the equilibrium so-
lutions of the pure nematic polymers are extendable for large values of b where
b is the nematic strength.
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